Functional Relevance of the Switch of VEGF Receptors/Co-Receptors during Peritoneal Dialysis-Induced Mesothelial to Mesenchymal Transition

نویسندگان

  • María Luisa Pérez-Lozano
  • Pilar Sandoval
  • Ángela Rynne-Vidal
  • Abelardo Aguilera
  • José Antonio Jiménez-Heffernan
  • Patricia Albar-Vizcaíno
  • Pedro L. Majano
  • José Antonio Sánchez-Tomero
  • Rafael Selgas
  • Manuel López-Cabrera
چکیده

Vascular endothelial growth factor (VEGF) is up-regulated during mesothelial to mesenchymal transition (MMT) and has been associated with peritoneal membrane dysfunction in peritoneal dialysis (PD) patients. It has been shown that normal and malignant mesothelial cells (MCs) express VEGF receptors (VEGFRs) and co-receptors and that VEGF is an autocrine growth factor for mesothelioma. Hence, we evaluated the expression patterns and the functional relevance of the VEGF/VEGFRs/co-receptors axis during the mesenchymal conversion of MCs induced by peritoneal dialysis. Omentum-derived MCs treated with TGF-β1 plus IL-1β (in vitro MMT) and PD effluent-derived MCs with non-epithelioid phenotype (ex vivo MMT) showed down-regulated expression of the two main receptors Flt-1/VEGFR-1 and KDR/VEGFR-2, whereas the co-receptor neuropilin-1 (Nrp-1) was up-regulated. The expression of the Nrp-1 ligand semaphorin-3A (Sema-3A), a functional VEGF competitor, was repressed throughout the MMT process. These expression pattern changes were accompanied by a reduction of the proliferation capacity and by a parallel induction of the invasive capacity of MCs that had undergone an in vitro or ex vivo MMT. Treatment with neutralizing anti-VEGF or anti-Nrp-1 antibodies showed that these molecules played a relevant role in cellular proliferation only in naïve omentum-derived MCs. Conversely, treatment with these blocking antibodies, as well as with recombinant Sema-3A, indicated that the switched VEGF/VEGFRs/co-receptors axis drove the enhanced invasion capacity of MCs undergoing MMT. In conclusion, the expression patterns of VEGFRs and co-receptors change in MCs during MMT, which in turn would determine their behaviour in terms of proliferation and invasion in response to VEGF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of TLR4 in M1 Macrophage-Induced Epithelial-Mesenchymal Transition of Peritoneal Mesothelial Cells.

BACKGROUND/AIMS Peritoneal fibrosis is a frequent complication of peritoneal dialysis that follows inflammation. It is recognized that epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs), plays a key role in fibrogenesis. However, the relationship between inflammatory macrophages and PMCs remains elusive. In this study, we investigated the effects of different polariz...

متن کامل

Molecular Mechanisms Underlying Peritoneal EMT and Fibrosis

Peritoneal dialysis is a form of renal replacement alternative to the hemodialysis. During this treatment, the peritoneal membrane acts as a permeable barrier for exchange of solutes and water. Continual exposure to dialysis solutions, as well as episodes of peritonitis and hemoperitoneum, can cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fi...

متن کامل

Methylglyoxal induces peritoneal thickening by mesenchymal-like mesothelial cells in rats.

BACKGROUND The epithelial-to-mesenchymal transition (EMT) of mesothelial cells was observed in patients on peritoneal dialysis and may be involved in peritoneal thickening. Conventional peritoneal dialysis fluids (PDFs) that contain glucose degradation products (GDPs), such as methylglyoxal (MGO) and formaldehyde (FA), are bioincompatible. The aim of this study is to analyse the participation o...

متن کامل

Ex vivo analysis of dialysis effluent-derived mesothelial cells as an approach to unveiling the mechanism of peritoneal membrane failure.

During peritoneal dialysis (PD), the peritoneum is exposed to bioincompatible dialysis fluids, which causes progressive fibrosis and angiogenesis and, ultimately, ultrafiltration failure. In addition, repeated episodes of peritonitis or hemoperitoneum may accelerate all these processes. Fibrosis has been classically considered the main cause of peritoneal membrane functional decline. However, i...

متن کامل

Epithelial-to-mesenchymal transition of the mesothelial cell--its role in the response of the peritoneum to dialysis.

Peritoneal membrane fibrosis, ranging from mild inflammation to severe sclerosing peritonitis, is one of the complications of peritoneal dialysis (PD). In parallel with fibrosis, the peritoneum shows a progressive increase of capillaries and vasculopathy, involved in increased small solute transport across the membrane and ultrafiltration failure. Glucose and glucose degradation products from P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013